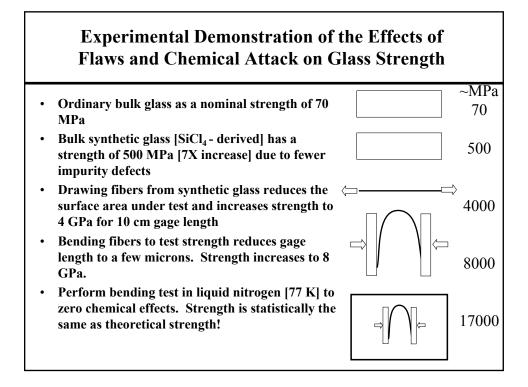
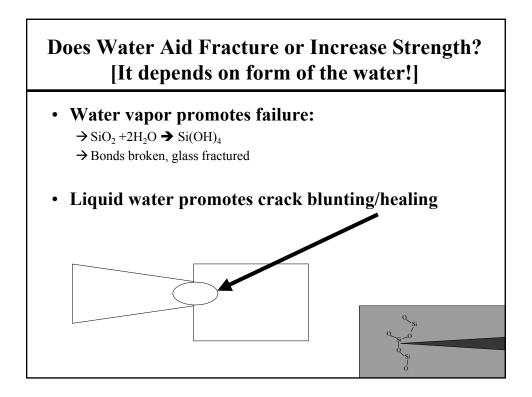

		Units Prin	ner	
System	Property	Units	Fundamental	Conversion
Standard International	Pressure, Stress	Pascal, Pa	N/m ² kg/m-sec ²	1000 psi = 7 MPa
	Toughness	MPa-m ^{0.5}	As above	N/A

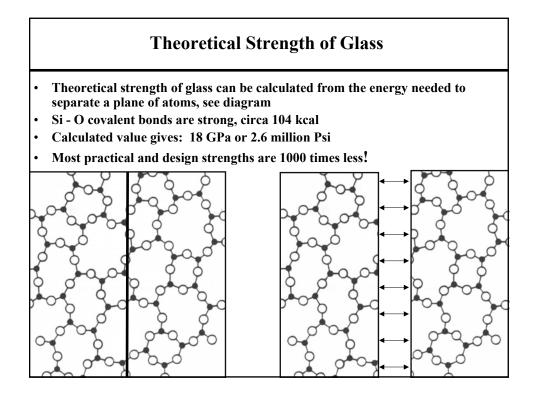
- Calculated strengths of glass with various flaw sizes and K_{IC} values.
- Typical flaws size ranges and K_{IC} values are highlighted

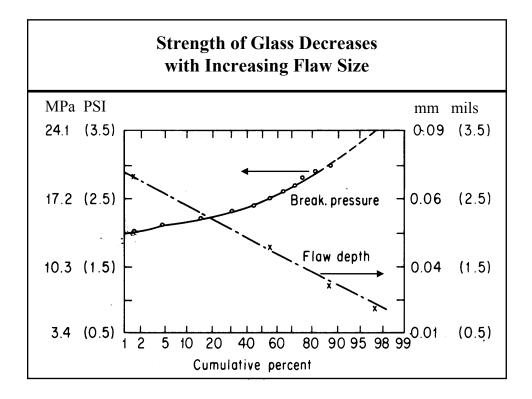
	KIC			
	0.5	1	2	10
c, microns				
0.2	631	1262	2523	12616
0.4	446	892	1784	892´
0.8	315	631	1262	6308
1.6	223	446	892	4460
3.2	158	315	631	3154
6.4	112	223	446	2230
12.8	79	158	315	1577
25.6	56	112	223	111
51.2	39	79	158	78
102.4	28	56	112	55
204.8	20	39	79	394
409.6	14	28	56	27
819.2	10	20	39	19
1638.4	7	14	28	13
3276.8	5	10	20	9

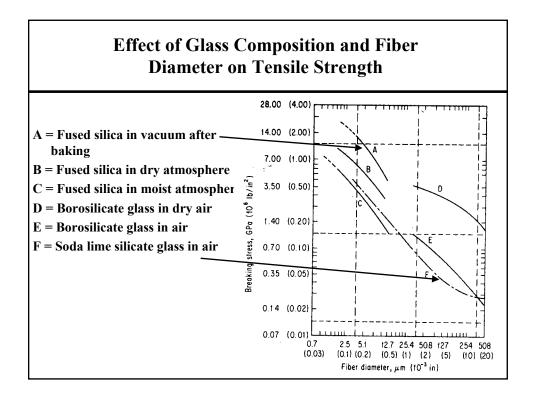


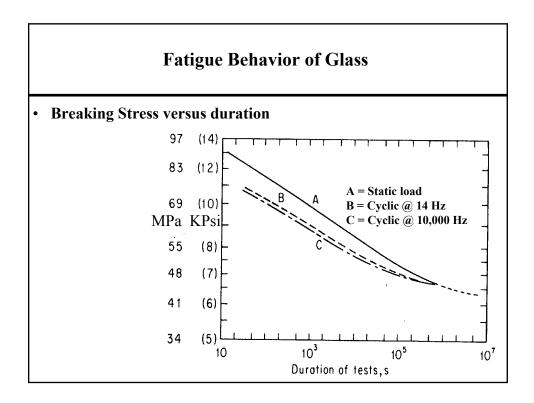

Chemical Aspects of Glass Strength

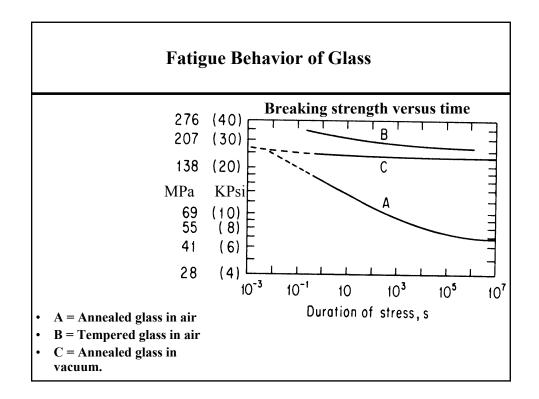
- Si-O bonds are susceptible to scission by nucleophilic attack.
- Negatively charges attacking the positively charged nucleus
- Result:

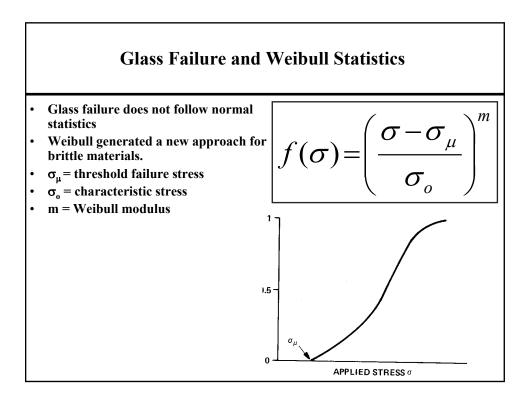

$$\equiv Si - O - Si \equiv + H_2O \implies 2 [\equiv Si - OH]$$


The presence of water or other polar substances greatly accelerates the crack propagation process

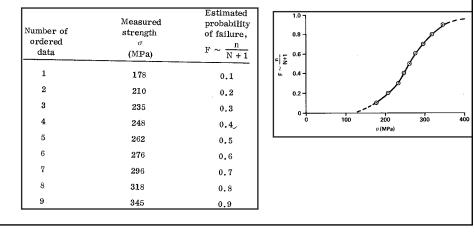

Mechanical Pro	nertie	s of Ma	terials	Com	narisa	n
Wieenamear i i	opernes	5 UI 1VIA	iter rans	Com	ipai 150	11
					Specific	Specific
Material	Density	Modulus	Yield	Ultimate	Yield	Stiffness
Glass	2.6	70	70	70	26.9	26.
Aluminum, Alloy 1100-H14	2.7	69	110	120	40.7	25.
Steel, High Strength, low range	7.85	200	340	550	43.3	25.
Magnesium, low	1.8	43	80	140	44.4	23.
Steel, hot rolled, 1% C	7.85	200	580	960	73.9	25.
Glass, Phys Tempered	2.6	70	210	210	80.8	26.
Steel, High Strength, high range	7.85	200	1000	1200	127.4	25.
Aluminum, Alloy 2014-T6	2.7	72	410	500	151.9	26.
Magnesium, high	1.8	43	280	340	155.6	23.
Titanium, Iow	4.5	110	760	900	168.9	24.
Glass, Chem. Tempered	2.6	70	500	500	192.3	26.
Titanium, high	4.5	110	1000	1200	222.2	24.
	2.6	70	4000	4000	1538.5	26.

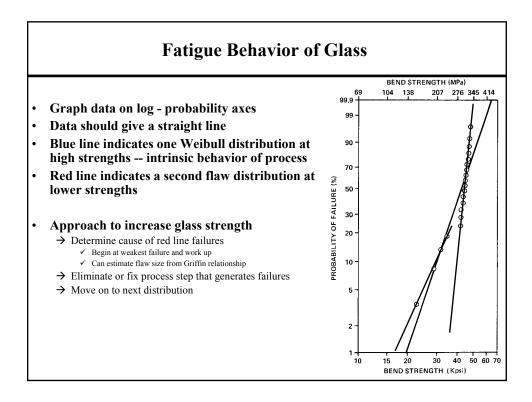


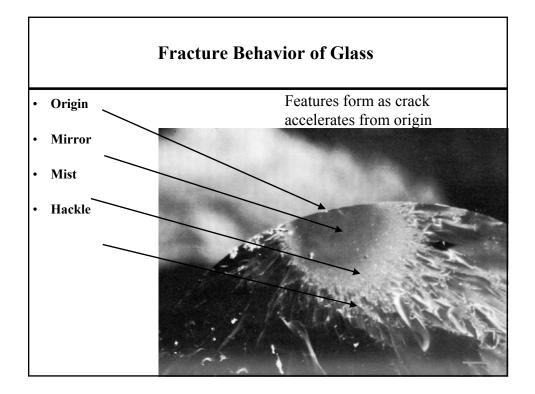


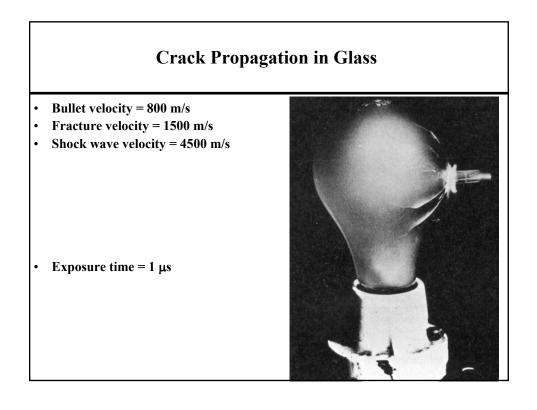

C		
Condition of Glass	МРа	10^3 lb/in ²
Surfaces ground or sandblasted	10-28	1.5-4.0
Pressed articles	21–55	3.0-8.0
Blown ware:		
Hot iron molds	28-62	4.0-9.0
Paste molds	35-69	5.0-10.0
Inner surfaces	104-280	15.0-40.0
Drawn tubing or rod	41-104	6.0-15.0
Window glass	55–138	8.0 - 20.0
Fine fibers:		
Annealed	69–28 0	10.0 - 40.0
Freshly drawn	207-2758	30-400.0

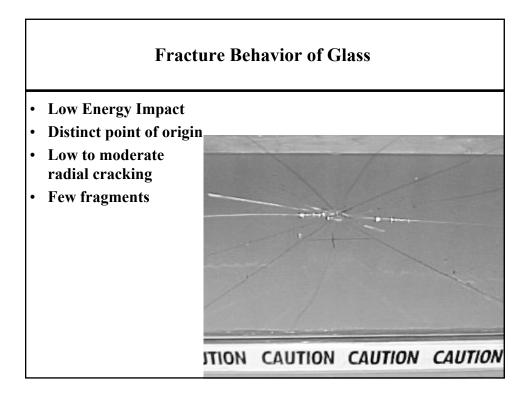
Strength Depends on S		tion
A pristine, protected surface is imp Flaws concentrate stress and reduc Etching or fire-polishing can remo Lacquer protects surfaces, mechan	e strength ve flaws	C
	Element Street	-4h 1 h laad
	Flexural Streng durati	
Surface Condition		
Surface Condition As Received	durati	on
	durati MPa	on KPsi

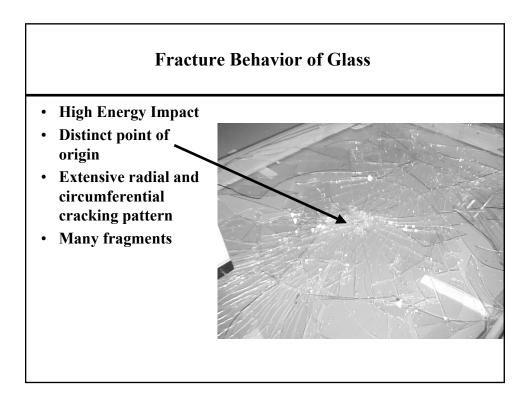


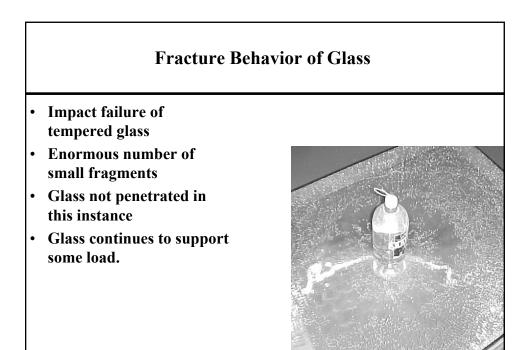


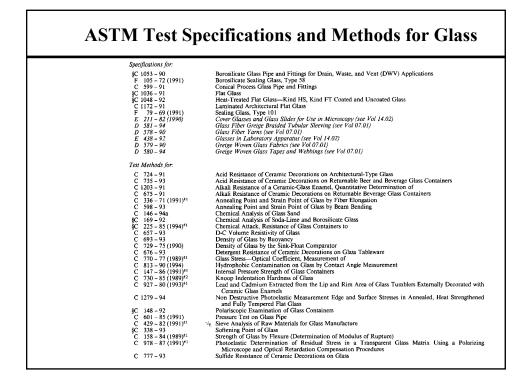



Weibull Statistics -- Example


- · Sort measured strength data in ascending order
- Devise a way to calculate frequency, simple one shown
- Graph data on linear axes







Treatment	Approximate maximun strengthening factor
Quench-hardening	6
Ion exchange	10
Surface crystallization	17
Ion exchange and surface crystallization	22
Etching	30
Fire-polishing	200
Second-phase particles	2

ASTM Test Specifications and Methods for Glass [Continued]				
Test Methods for:				
§C 149 - 86 (1991) ^{€1}	Thermal Shock Resistance of Glass Containers			
C 600 - 85 (1991)	Thermal Shock Test on Glass Pipe			
C 623 – 92 F 218 – 68 (1989)	Young's Modulus, Shear Modulus, and Poisson's Ratio for Glass and Glass-Ceramics by Resonance Analyzing Stress in Glass (see Vol 5.02)			
F = 218 - 65 (1989) F = 21 - 65 (1989)	Hydrophobic Surface Films by the Atomizer Test (see Vol 10.05)			
F 22 - 65 (1992)	Hydrophobic Surface Films by the Water-Break Test (see Vol 10.05)			
Practices for:				
C 912 – 93	Designing a Process for Cleaning Technical Glasses			
C 824 - 91	Expansion, Linear Thermal, of Vitreous Glass Enamels and Glass Enamel Frits by the Dilatometer Method, Specimen Preparation for Determination of			
C 1256 – 93 ⁶¹	Interpreting Glass Fracture Surface Features			
C 829 - 81 (1990)	Measurement of Liquidus Temperature of Glass by the Gradient Furnace Method			
C 965 – 81 (1990) ⁶² F 14 – 80 (1991)	Measuring Viscosity of Glass Above the Softening Point Reference Glass-Metal Bead-Seal, Making and Testing			
F = 140 - 83(1991) F = 140 - 83(1991)	Reference Glass-Metal Butt Seals and Testing for Expansion Characteristics by Polarimetric Methods.			
1 110 00(1))	Making			
F 144 - 80 (1991)	Reference Glass-Metal Sandwich Seal and Testing for Expansion Characteristics by Polarimetric Methods, Making			
C 224 – 78 (1994) ⁶¹	Sampling Glass Containers			
E 165 - 94	Liquid Penetrant Inspection Method (see Vol 03.03)			
F = 35 - 68 (1988)	Minute Crystalline Particle Contaminants by X-Ray Diffraction, Identification of (see Vol 10.05)			
Terminology of:				
C 162 – 94c	Glass and Glass Products			