Comparison of

"Glass Viscosity Calculation Based on a Global Statistical Modeling Approach"

to other glass viscosity models


For comparison, the glass melting point predictions in oC at a viscosity of 10 Pa*s (100 Poise) for the compositions given in Table I according to several models are listed in Table II. All glasses in Table I are standards, where the viscosity (but not the composition except for DGG I) was verified by several laboratories, excluding the soda-lime-silica container glass "CO." CO is listed because of its simple composition, covered by most viscosity models. The experimental results are also shown in Table II for comparison.


Table I: Compositions in mol% of glasses for melting point predictions in Table II

Soda-lime-silica (CO) container glass [1]

SiO2 74.41, Al2O3 0.75, Na2O 12.90, K2O 0.19, MgO 0.30, CaO 11.27, SO3 0.16, Fe2O3 0.01, TiO2 0.01

NIST 710A [2]

SiO2 71.43, Al2O3 1.31, Na2O 8.25, K2O 6.27, CaO 9.62, ZnO 2.81, TiO2 0.32

NIST 717A [3]

SiO2 72.25, B2O3 16.97, Al2O3 2.19, Li2O 2.14, Na2O 1.03, K2O 5.42

711 [4]

SiO2 71.28, Al2O3 0.51, PbO 18.90, Na2O 3.76, K2O 5.55

710 [5]

SiO2 72.74, Al2O3 0.11, Na2O 8.70, K2O 5.07, CaO 12.82, SO3 0.15, Fe2O3 0.01, Sb2O3 0.40

DGG I [6]

SiO2 70.94, Al2O3 0.72, Na2O 14.34, K2O 0.21, MgO 6.16, CaO 7.13, SO3 0.32, Fe2O3 0.07, TiO2 0.10

Waste Glass Standard (WGS) [7]

SiO2 53.76, B2O3 8.24, Al2O3 3.04, Li2O 7.33, Na2O 12.54, K2O 1.93, MgO 1.41, CaO 1.77, Fe2O3 6.00, TiO2 1.00, MnO2 1.84, Cr2O3 0.04, ZrO2 0.06, BaO 0.04, NiO 1.00



Table II: Glass melting point predictions according to several models and experimental results; the values in parentheses were calculated by slightly exceeding the model application limits as often practiced.

Model

Melting point prediction in °C, viscosity = 10 Pa·s

CO

710A

717A

711

710

DGG I

WGS

Experiment

1467

1464

1555

1327

1434

1439

1048

Mazurin [8, 9]

1440

/

/

/

/

1428

/

Bottinga [10]

1494

1525

/

/

1475

1443

/

Lakatos 1972 [11]

1478

(1509)

/

/

(1441)

(1458)

/

Lakatos 1976 [8, 12]

1473

(1471)

/

/

(1444)

(1456)

/

Lyon [13]

1479

(1461)

/

/

(1423)

1454

/

Sasek [12]

1507

(1590)

/

/

(1493)

1498

/

Ledererova [12, 14]

1529

(1571)

/

/

(1498)

1508

/

Cuartas [12, 14]

(1460)

(1545)

/

/

(1491)

1455

/

Braginskii [12, 14]

(1321)

/

/

/

/

(1436)

/

Herbert [15]

/

/

/

1321

/

/

/

Öksoy [16]

1438

(290)a

/

/

(1406)

(1198)a

/

Öksoyb [16]

1476

(1494)

/

/

(1437)

(1456)

/

Priven, [8, 17]

1437

1431

1460

1321

1474

1443

(1282)

Hrma, 1994 [18]

/

/

/

/

/

/

(1075)c

Hrmad, 2006 [19]

1475

/

/

/

/

1437

/

Hrmae, 2006 [19]

1467

(1433)

(1524)

/

1401

1444

/

Fluegel 2004 [20]

1478

1465

1558

1323

1434

1452

/

Fluegel 2005 [21]

1480

(1534)

/

/

(1472)

(1440)

/

Fluegel 2006 [22]

1468

1457

1526

1310

1434

1446

1050

a Unusual predictions caused by the unrealistic coefficients for Fe2O3, TiO2, and SO3

b Neglecting Fe2O3, TiO2, and SO3

c Counting K2O as Na2O because model not valid for glasses containing K2O

d Local model for soda-lime container glasses

e Global model for various commercial glasses



REFERENCES


[1] P. Hrma, C. A. See, O. P. Lam, K. B. C. Minister: "High-Temperature Viscosity of Commercial Glasses", part of Chapter 7 in: "High temperature glass melt property database for process modeling"; Eds.: T. P. Seward III and T. Vascott; The American Ceramic Society, Westerville, Ohio (2005), ISBN: 1-57498-225-7.

http://www.wiley.com/
http://www.amazon.com/


[2] "Standard Reference Material 710A, Soda-Lime-Silica Glass"; National Institute of Standards & Technology (NIST), Gaithersburg, MD, 20899, USA; March 20, 1991.


[3] "Standard Reference Material 717A, Borosilicate Glass"; National Institute of Standards & Technology (NIST), Gaithersburg, MD, 20899, USA; September 18, 1996.


[4] "Standard Sample No. 711, Certificate of Viscosity Values, Lead-Silica Glass"; National Bureau of Standards, U.S. Department of Commerce, Washington, D.C., 20235, USA; July 1, 1964.


[5] A. Napolitano, E. G. Hawkins: "Viscosity of a Standard Soda-Lime-Silica Glass"; J. of Research of the National Bureau of Standards - A. Physics and Chemistry (1964), vol. 68A, no. 5, p 439-448.


[6] G. Meerlender: "Viskositäts-Temperaturverhalten des Standardglases I der DGG" (DGG - Deutsche Glastechnische Gesellschaft, German Society of Glass Technology); Glastechn. Ber. (1974), vol. 47, no. 1, p 1-3.

http://www.hvg-dgg.de/uploads/media/Standardglas_Ia_01.pdf

http://www.hvg-dgg.de/uploads/media/Standardglas_Ib_01.pdf


[7] Waste Glass Standard, personal communication, publication in preparation.

The Waste Glass Standard was established in Round-Robin tests with several participating laboratories.


[8] SciGlass 6.5 Database and Information System (2005).

http://www.sciglass.info/


[9] O. V. Mazurin, N. I. Tretiakova, T. P. Shvaiko-Shvaikovskaya: "Metod rascheta viazkosti silikatnykh stekol"; Deposited in VINITI (1969), no. DEP1091-69.


[10] Y. Bottinga, D. F. Weill: "The Viscosity of Magmatic Silicate Liquids: A Model for Calculation"; Am. J. Sci. (1972), vol. 272, p 438-475.


[11] T. Lakatos, L.-G. Johansson, B. Simmingsköld: "Viscosity temperature relations in the glass system SiO2-Al2O3-Na2O-K2O-CaO-MgO in the composition range of technical glasses"; Glass Technology (1972), vol. 13, no. 3, p 88-95.


[12] H. Scholze: "Glass - Nature, Structure and Properties"; Springer-Verlag (1991), ISBN 0-387-97396-6.


[13] K. C. Lyon: "Prediction of the Viscosities of Soda-Lime Silica Glasses"; J. Res. Nat. Bur. Standards A, Physics and Chemistry (1974), vol. 78A, no. 4, p 497-504.


[14] D. Martlew: "Viscosity of Molten Glasses"; Chapter 5 in: "Properties of Glass-Forming Melts", edited by L. D. Pye, A. Montenaro, I. Joseph, CRC Press, Boca Raton, Florida (2005), ISBN 1-574444-662-2.

http://www.amazon.com/gp/product/1574446622/103-9069536-5224630?v=glance&n=283155&n=507846&s=books&v=glance


[15] J. Herbert, M. Prod'homme, M. Derobert: "Viscosity-Temperature Relations in the SiO2-Na2O-K2O-Al2O3-B2O3-PbO System in the Composition Range of Lead Crystal Glass"; Verres et Refractaires (1976), vol. 30, no. 2, p 219-221.


[16] D. Öksoy, D. L. Pye, E. N. Boulos: "Statistical analysis of viscosity-composition data in glassmaking"; Glastech. Ber. Glass Sci. Technol. (1994), vol. 67, no. 7, p 189-195.


[17] A. I. Priven: "General Method for Calculating the Properties of Oxide Glasses and Glass-Forming Melts from their Composition and Temperature"; Glass Technology (2004), vol. 45, no. 6, p 244-254.

http://www.sciglass.info/Publications/Priven.pdf

http://www.ingentaconnect.com/content/sgt/gt/2004/00000045/00000006/art00001


[18] P. R. Hrma, G. F. Piepel et al.: "Property/Composition Relationships for Hanford High-Level Waste Glasses Melting at 1150oC"; PNL Report 10359 to the US Department of Energy (1994), vol. 1 and 2.

http://www.osti.gov/dublincore/gpo/servlets/purl/10121755-P8oQTl/webviewable/

http://www.osti.gov/dublincore/gpo/servlets/purl/10121752-cDjMo0/webviewable/

J. D. Vienna, P. R. Hrma et al.: "Effect of Composition and Temperature on the Properties of High Level Waste (HLW) Glass Melting above 1200oC (Draft)"; PNNL Report 10987 to the US Department of Energy (1996).

http://www.osti.gov/dublincore/gpo/servlets/purl/212394-mv0A6T/webviewable/

P. Hrma, R. J. Robertus: "Waste glass design based on property composition functions"; Ceram. Eng. Sci. Proc. (1993), vol. 14, no. 11/12, p 187-203.

P. Hrma, G. F. Piepel, P. E. Redgate, D. E. Smith, M. J. Schweiger, J. D. Vienna, D. S. Kim: "Prediction of processing properties for nuclear waste glasses"; Ceramic Transactions, vol. 61, "Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries" (1995), p 505-513.


[19] P. Hrma: "High-Temperature Viscosity of Commercial Glasses"; Ceramics - Silikáty (2006), vol. 50, no. 2, p 57-66.

http://www.ceramics-silikaty.cz/2006/2006_02_057.htm


[20] A. Fluegel, A. K. Varshneya, D. A. Earl, T. P. Seward, D. Oksoy: "Improved compositio-property relations in silicate glasses, part I: Viscosity"; Ceramic Transactions, vol. 170, "Melt Chemistry, Relaxation, and Solidification Kinetics of Glasses" - Proceedings of the 106th Annual Meeting of the American Ceramic Society (2005), p 129-143.


[21] A. Fluegel, D. A. Earl, A. K. Varshneya, D. Öksoy: "Statistical analysis of viscosity, electrical resistivity, and further glass melt properties", Chapter 9 in: "High temperature glass melt property database for process modeling"; Eds.: T. P. Seward III and T. Vascott; The American Ceramic Society, Westerville, Ohio, 2005, ISBN: 1-57498-225-7.


[22] A. Fluegel: "Glass Viscosity Calculation Based on a Global Statistical Modeling Approach"; Glass Technol.: Europ. J. Glass Sci. Technol. A, vol. 48, 2007, no. 1, p 13-30.