|
Comparison of
"Glass Viscosity Calculation Based on a Global Statistical Modeling Approach"
to other glass viscosity models
For comparison, the glass melting point predictions in oC at a viscosity of 10 Pa*s (100 Poise) for the compositions given in Table I according to several models are listed in Table II. All glasses in Table I are standards, where the viscosity (but not the composition except for DGG I) was verified by several laboratories, excluding the soda-lime-silica container glass "CO." CO is listed because of its simple composition, covered by most viscosity models. The experimental results are also shown in Table II for comparison.
Table I: Compositions in mol% of glasses for melting point predictions in Table II |
|
Soda-lime-silica (CO) container glass [1] |
SiO2 74.41, Al2O3 0.75, Na2O 12.90, K2O 0.19, MgO 0.30, CaO 11.27, SO3 0.16, Fe2O3 0.01, TiO2 0.01 |
NIST 710A [2] |
SiO2 71.43, Al2O3 1.31, Na2O 8.25, K2O 6.27, CaO 9.62, ZnO 2.81, TiO2 0.32 |
NIST 717A [3] |
SiO2 72.25, B2O3 16.97, Al2O3 2.19, Li2O 2.14, Na2O 1.03, K2O 5.42 |
711 [4] |
SiO2 71.28, Al2O3 0.51, PbO 18.90, Na2O 3.76, K2O 5.55 |
710 [5] |
SiO2 72.74, Al2O3 0.11, Na2O 8.70, K2O 5.07, CaO 12.82, SO3 0.15, Fe2O3 0.01, Sb2O3 0.40 |
DGG I [6] |
SiO2 70.94, Al2O3 0.72, Na2O 14.34, K2O 0.21, MgO 6.16, CaO 7.13, SO3 0.32, Fe2O3 0.07, TiO2 0.10 |
Waste Glass Standard (WGS) [7] |
SiO2 53.76, B2O3 8.24, Al2O3 3.04, Li2O 7.33, Na2O 12.54, K2O 1.93, MgO 1.41, CaO 1.77, Fe2O3 6.00, TiO2 1.00, MnO2 1.84, Cr2O3 0.04, ZrO2 0.06, BaO 0.04, NiO 1.00 |
Table II: Glass melting point predictions according to several models and experimental results; the values in parentheses were calculated by slightly exceeding the model application limits as often practiced. |
|||||||
Model |
Melting point prediction in °C, viscosity = 10 Pa·s |
||||||
CO |
710A |
717A |
711 |
710 |
DGG I |
WGS |
|
Experiment |
1467 |
1464 |
1555 |
1327 |
1434 |
1439 |
1048 |
Mazurin [8, 9] |
1440 |
/ |
/ |
/ |
/ |
1428 |
/ |
Bottinga [10] |
1494 |
1525 |
/ |
/ |
1475 |
1443 |
/ |
Lakatos 1972 [11] |
1478 |
(1509) |
/ |
/ |
(1441) |
(1458) |
/ |
Lakatos 1976 [8, 12] |
1473 |
(1471) |
/ |
/ |
(1444) |
(1456) |
/ |
Lyon [13] |
1479 |
(1461) |
/ |
/ |
(1423) |
1454 |
/ |
Sasek [12] |
1507 |
(1590) |
/ |
/ |
(1493) |
1498 |
/ |
Ledererova [12, 14] |
1529 |
(1571) |
/ |
/ |
(1498) |
1508 |
/ |
Cuartas [12, 14] |
(1460) |
(1545) |
/ |
/ |
(1491) |
1455 |
/ |
Braginskii [12, 14] |
(1321) |
/ |
/ |
/ |
/ |
(1436) |
/ |
Herbert [15] |
/ |
/ |
/ |
1321 |
/ |
/ |
/ |
Öksoy [16] |
1438 |
(290)a |
/ |
/ |
(1406) |
(1198)a |
/ |
Öksoyb [16] |
1476 |
(1494) |
/ |
/ |
(1437) |
(1456) |
/ |
Priven, [8, 17] |
1437 |
1431 |
1460 |
1321 |
1474 |
1443 |
(1282) |
Hrma, 1994 [18] |
/ |
/ |
/ |
/ |
/ |
/ |
(1075)c |
Hrmad, 2006 [19] |
1475 |
/ |
/ |
/ |
/ |
1437 |
/ |
Hrmae, 2006 [19] |
1467 |
(1433) |
(1524) |
/ |
1401 |
1444 |
/ |
Fluegel 2004 [20] |
1478 |
1465 |
1558 |
1323 |
1434 |
1452 |
/ |
Fluegel 2005 [21] |
1480 |
(1534) |
/ |
/ |
(1472) |
(1440) |
/ |
Fluegel 2006 [22] |
1468 |
1457 |
1526 |
1310 |
1434 |
1446 |
1050 |
a Unusual predictions caused by the unrealistic coefficients for Fe2O3, TiO2, and SO3 b Neglecting Fe2O3, TiO2, and SO3 c Counting K2O as Na2O because model not valid for glasses containing K2O d Local model for soda-lime container glasses e Global model for various commercial glasses |
REFERENCES
[1] P. Hrma, C. A. See, O. P. Lam, K. B. C. Minister: "High-Temperature Viscosity of Commercial Glasses", part of Chapter 7 in: "High temperature glass melt property database for process modeling"; Eds.: T. P. Seward III and T. Vascott; The American Ceramic Society, Westerville, Ohio (2005), ISBN: 1-57498-225-7.
http://www.wiley.com/
http://www.amazon.com/
[2] "Standard Reference Material 710A, Soda-Lime-Silica Glass"; National Institute of Standards & Technology (NIST), Gaithersburg, MD, 20899, USA; March 20, 1991.
[3] "Standard Reference Material 717A, Borosilicate Glass"; National Institute of Standards & Technology (NIST), Gaithersburg, MD, 20899, USA; September 18, 1996.
[4] "Standard Sample No. 711, Certificate of Viscosity Values, Lead-Silica Glass"; National Bureau of Standards, U.S. Department of Commerce, Washington, D.C., 20235, USA; July 1, 1964.
[5] A. Napolitano, E. G. Hawkins: "Viscosity of a Standard Soda-Lime-Silica Glass"; J. of Research of the National Bureau of Standards - A. Physics and Chemistry (1964), vol. 68A, no. 5, p 439-448.
[6] G. Meerlender: "Viskositäts-Temperaturverhalten des Standardglases I der DGG" (DGG - Deutsche Glastechnische Gesellschaft, German Society of Glass Technology); Glastechn. Ber. (1974), vol. 47, no. 1, p 1-3.
http://www.hvg-dgg.de/uploads/media/Standardglas_Ia_01.pdf
http://www.hvg-dgg.de/uploads/media/Standardglas_Ib_01.pdf
[7] Waste Glass Standard, personal communication, publication in preparation.
The Waste Glass Standard was established in Round-Robin tests with several participating laboratories.
[8] SciGlass 6.5 Database and Information System (2005).
[9] O. V. Mazurin, N. I. Tretiakova, T. P. Shvaiko-Shvaikovskaya: "Metod rascheta viazkosti silikatnykh stekol"; Deposited in VINITI (1969), no. DEP1091-69.
[10] Y. Bottinga, D. F. Weill: "The Viscosity of Magmatic Silicate Liquids: A Model for Calculation"; Am. J. Sci. (1972), vol. 272, p 438-475.
[11] T. Lakatos, L.-G. Johansson, B. Simmingsköld: "Viscosity temperature relations in the glass system SiO2-Al2O3-Na2O-K2O-CaO-MgO in the composition range of technical glasses"; Glass Technology (1972), vol. 13, no. 3, p 88-95.
[12] H. Scholze: "Glass - Nature, Structure and Properties"; Springer-Verlag (1991), ISBN 0-387-97396-6.
[13] K. C. Lyon: "Prediction of the Viscosities of Soda-Lime Silica Glasses"; J. Res. Nat. Bur. Standards A, Physics and Chemistry (1974), vol. 78A, no. 4, p 497-504.
[14] D. Martlew: "Viscosity of Molten Glasses"; Chapter 5 in: "Properties of Glass-Forming Melts", edited by L. D. Pye, A. Montenaro, I. Joseph, CRC Press, Boca Raton, Florida (2005), ISBN 1-574444-662-2.
[15] J. Herbert, M. Prod'homme, M. Derobert: "Viscosity-Temperature Relations in the SiO2-Na2O-K2O-Al2O3-B2O3-PbO System in the Composition Range of Lead Crystal Glass"; Verres et Refractaires (1976), vol. 30, no. 2, p 219-221.
[16] D. Öksoy, D. L. Pye, E. N. Boulos: "Statistical analysis of viscosity-composition data in glassmaking"; Glastech. Ber. Glass Sci. Technol. (1994), vol. 67, no. 7, p 189-195.
[17] A. I. Priven: "General Method for Calculating the Properties of Oxide Glasses and Glass-Forming Melts from their Composition and Temperature"; Glass Technology (2004), vol. 45, no. 6, p 244-254.
http://www.sciglass.info/Publications/Priven.pdf
http://www.ingentaconnect.com/content/sgt/gt/2004/00000045/00000006/art00001
[18] P. R. Hrma, G. F. Piepel et al.: "Property/Composition Relationships for Hanford High-Level Waste Glasses Melting at 1150oC"; PNL Report 10359 to the US Department of Energy (1994), vol. 1 and 2.
http://www.osti.gov/dublincore/gpo/servlets/purl/10121755-P8oQTl/webviewable/
http://www.osti.gov/dublincore/gpo/servlets/purl/10121752-cDjMo0/webviewable/
J. D. Vienna, P. R. Hrma et al.: "Effect of Composition and Temperature on the Properties of High Level Waste (HLW) Glass Melting above 1200oC (Draft)"; PNNL Report 10987 to the US Department of Energy (1996).
http://www.osti.gov/dublincore/gpo/servlets/purl/212394-mv0A6T/webviewable/
P. Hrma, R. J. Robertus: "Waste glass design based on property composition functions"; Ceram. Eng. Sci. Proc. (1993), vol. 14, no. 11/12, p 187-203.
P. Hrma, G. F. Piepel, P. E. Redgate, D. E. Smith, M. J. Schweiger, J. D. Vienna, D. S. Kim: "Prediction of processing properties for nuclear waste glasses"; Ceramic Transactions, vol. 61, "Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries" (1995), p 505-513.
[19] P. Hrma: "High-Temperature Viscosity of Commercial Glasses"; Ceramics - Silikáty (2006), vol. 50, no. 2, p 57-66.
http://www.ceramics-silikaty.cz/2006/2006_02_057.htm
[20] A. Fluegel, A. K. Varshneya, D. A. Earl, T. P. Seward, D. Oksoy: "Improved compositio-property relations in silicate glasses, part I: Viscosity"; Ceramic Transactions, vol. 170, "Melt Chemistry, Relaxation, and Solidification Kinetics of Glasses" - Proceedings of the 106th Annual Meeting of the American Ceramic Society (2005), p 129-143.
[21] A. Fluegel, D. A. Earl, A. K. Varshneya, D. Öksoy: "Statistical analysis of viscosity, electrical resistivity, and further glass melt properties", Chapter 9 in: "High temperature glass melt property database for process modeling"; Eds.: T. P. Seward III and T. Vascott; The American Ceramic Society, Westerville, Ohio, 2005, ISBN: 1-57498-225-7.
[22] A. Fluegel: "Glass Viscosity Calculation Based on a Global Statistical Modeling Approach"; Glass Technol.: Europ. J. Glass Sci. Technol. A, vol. 48, 2007, no. 1, p 13-30.