Older Glass Thermal Expansion Models

Go to: Contemporary Glass Thermal Expansion Model


This table shows older thermal expansion models by various authors. For calculation all weight fractions are multiplied by the displayed coefficients below, and the products are summed to obtain the thermal expansion coefficient in ppm/K. For example, a glass with the composition in wt% 75 SiO2 + 25 Na2O would have a thermal expansion coefficient of 0.75*2.67 + 0.25*33.33 = 10.335 ppm/K (= 103.35 * 10-7 oC-1) according to Winkelmann and Schott.


Oxide

Coefficients based on weight fraction of oxide (Appen based on mol fraction)

Winkelmann and Schott [1]

Appen [2]

Lederova et al. [3]

English and Turner [4]

Hall [5]

SiO2

2.67

0.5…3.8a

0b

0.50

1.4

B2O3

0.33

-5.0…0.0c

/

-6.53

2.0

P2O5

6.67

14.0

/

/

/

Al2O3

16.67

-3.0

1.685

1.40

5.0

Li2O

6.67

27

/

/

/

Na2O

33.33

39.5 (41)d

32.172

41.60

38.0

K2O

28.33

46.5 (49)

38.068

39.00

30.0

BeO

/

4.5

/

/

/

MgO

0.33

6.0

3.059

4.50

2.0

CaO

16.67

13

11.680

16.30

15.0

SrO

/

16

/

/

/

BaO

10.00

20

5.375

14.00

12.0

Fe2O3

13.33

5.5g

/

/

/

ZnO

6.00

5.0

/

7.00

10.0

PbO

13.00

13…19e

/

10.60

7.5

TiO2

13.67

-1.5…3.0f

/

/

/

As2O3

6.67

/

/

/

/

ZrO2

/

-6.0

/

/

/

Sb2O5

12.00

7.5

/

/

/

P2O5

6.67

14.0

/

/

/

SnO2

6.67

-4.5

/

/

/

Cr2O3

17.00

/

/

/

/

MnO

7.33

10.5g

/

/

/

NiO

/

5.0

/

/

/

CoO

14.67

5.0

/

/

/

CuO

7.33

3.0

/

/

/

CdO

/

11.5

/

/

/

Ga2O3

/

-2.0

/

/

/

Applicable temperature range in oC

/

20-100

20-400

20-300

25-90

25-Tg


Footnotes:

a  Coefficient for SiO2 = 10.5 – 0.1·[SiO2] for [SiO2] ≥ 67 mol%; otherwise 3.8 (expressions in brackets represent mol%)

b   SiO2 is excluded from the calculation in the model by Lederova et al. Instead, a constant of 2.976 ppm/K is added.

c  For glasses containing B2O3 the proportion F must be formed first, whereby the expressions in brackets represent mol%:

F = {([Na2O]+[K2O]+[BaO])+0.7([CaO]+[SrO]+[CdO]+[PbO])+0.3([Li2O]+[MgO]+[ZnO])–[Al2O3]}/[B2O3]

One then obtains: Coefficient for B2O3 = –1.25F for F ≤ 4; otherwise –5.0.

d  Values in parentheses are valid for binary glasses SiO2-R2O. The coefficient for K2O of 46.5 applies only to those glasses that contain more than 1 mol% Na2O; otherwise, it is 42.0.

e  Coefficient for PbO = 13.0 for glasses with [R2O] < 3 mol%, otherwise coefficient for PbO = 11.5 + 0.5·[R2O]

f  Coefficient for TiO2 = 10.5 – 0.15·[SiO2] for 80 ≥ [SiO2] ≥ 50

g  The coefficients for Fe2O3 and MnO are valid for the normally occurring oxidation states.

 

References:

[1]  A. Winkelmann, O. Schott: "Über thermische Widerstandscoefficienten verschiedener Gläser in ihrer Abhängigkeit von der chemischen Zusammensetzung (Dependence of the thermal resistance of various glasses from the chemical composition)"; Annalen der Physik, 1894, vol. 287, issue 4, p 730-746 (in German).

H. Scholze, Glass - Nature, Structure and Properties, Springer-Verlag, 1991.

M. B. Volf, “Mathematical Approach to Glass," Glass Science and Technology, vol. 9, Elsevier, 1988.

[2]  A. A. Appen, Glass Chemistry, 2nd Edition, Leningrad, 1974.

H. Scholze, Glass - Nature, Structure and Properties, Springer-Verlag, 1991.

[3]  V. Ledererova, A. Smrcek, J. Rysavy, Sklar Keram. 36 (1986) 304 (Orig. Czech).

H. Scholze, Glass - Nature, Structure and Properties, Springer-Verlag, 1991.

[4]  S. English, W. E. S. Turner; J. Am. Ceram. Soc. 10 (1927) 551.

[5]  F. P. Hall, J. Am. Ceram. Soc. 13 (1930) 182.